سختی فوق العاده بالا با مقاومت در برابر سایش استثنایی آلیاژ نانوساختار مقرون به صرفه جدید

foladd

 

سختی فوق العاده بالا با مقاومت در برابر سایش استثنایی آلیاژ نانوساختار مقرون به صرفه جدید

Abstract

Industry applications of current high-entropy alloys (HEAs) are limited by their prohibitive costs. Here, we present a cost-effective and facile approach to producing nanostructured HEAs with lower cost and exceptional mechanical properties. In the present work, the key was to design a novel cost-effective Fe40Ni25Cr25Mo5Al5 high-entropy alloy with an ultrafine-grained (UFG) microstructure through cyclic closed-die forging (CCDF) at room temperature for up to six passes. The as-homogenized alloy exhibited a dual-phase structure, with minor [CrMoFe]-rich dendrites dispersed in a nearly homogenous face-centered cubic (FCC) matrix. Increasing CCDF passes resulted in achieving a more homogeneous nanograin, accumulation of dislocations, fragmentation of [CrMoFe]-rich dendrites, and efficient distribution within the matrix, which provided ideal conditions for the development of a nanostructured Fe40Ni25Cr25Mo5Al5 alloy with superior mechanical properties (hardness and wear resistance). The highest microhardness (∼ 843 HV) and the lowest wear rate (∼ (0.9 ± 0.1) × 10–5 mm3.N−1.m−1) were obtained in the Fe40Ni25Cr25Mo5Al5 alloy after six CCDF passes. It was suggested that the Rotated Cube {001}<110> texture component of the CCDF-processed alloy contributed positively to the improvement of wear resistance properties. These findings suggest that CCDF processing has the potential to achieve cost-effective nanostructured high-entropy alloys and implement them in engineering and structural applications.

آخرین مقالات

Special offers

Custom Transport
Solutions

Complex logistic solutions for your business

View details

Warehousing & Storage
Services

Careful storage of your goods

View details